TUGAS BESAR

Sitem keamananan & Kontrol Kebakaran Laboratorium


A. Tujuan [back]

a. Mengetahui pengertian Mux Demux

b. Mengetahui cara menggunakan mux demux

c. Mengetahui cara kerja rangkaian aplikasi

B. Alat dan Bahan [back]

Alat:

1. Power Suply



Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

2. Voltmeter DC



Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.

 

Bahan:

1. Resistor



Resistor merupakan komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur besarnya arus yang mengalir dalam rangkaian.

Spesifikasi Resistor yang digunakan:

Resistor 10k


Data sheet resistor:




2. Diode



Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

Karakteristik Dioda:


3.Transistor(BC547)


Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Pada rangkaian water level sensor ini transistor hanya digunakan sebagai saklar, dengan adanya arus di base maka transistor akan "on" sehingga akan ada arus dari kolektor ke emitor.

Spesifikasi Transistor:

1. DC Current gain(hfe) maksimal 800

2. Arus Collector kontinu(Ic) 100mA

3. Tegangan Base-Emitter(Vbe) 6V

4. Arus Base(Ib) maksimal 5mA

Data Sheet Transistor



Grafik Respon:




4. Gerbang Logika AND (IC 7408)





IC TTL adalah IC yang banyak digunakan dalam rangkaian digital karena menggunakan sumber tegangan (VS) antara 4,75 Volt sampai 5,25 Volt. Komponen pembangun IC TTL(transistor-transistor logic) adalah sesuai dengan namanya IC ini berisi beberapa transistor yang digabungkan sehingga membentuk dua keadaan (ON/FF).Konfiugurasi pin:

- Vcc : Kaki 14

 - GND : Kaki 7

- Input : Kaki 1, 2, 3, 4, 5, 9,10,12 dan 13

- Output : Kaki 3,6, 8,  dan 11

Konfigurasi IC 7408



Data Sheet IC 7408

 



5. D Flip Flop



Data flip-flop merupakan pengemangan dari RS flip-flop, pada D flip-flop kondisi output terlarang (tidak tentu) tidak lagi terjadi. Data flip-flop sering juga disebut dengan istilah D-FF sehingga lebih mudah dalam penyebutannya.

Konfigurasi pin IC 7474



 
Data Sheet IC 7474

6. Logic State



Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan  input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.


7. Sensor MQ 2
Sensor MQ-2 adalah sensor yang digunakann untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog.

 Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

1. Catu daya pemanas : 5V AC/DC

2. Catu daya rangkaian : 5VDC

3. Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 - 20000ppm untuk methane 300 - 5000ppm untuk Hidrogen

4. Keluaran : analog (perubahan tegangan)

 


1. Pin 1 merupakan heater internal yang terhubung dengan ground.

2. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.

3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.

4. Pin 4 merupakan output yang akan menghasilkan tegangan analog. 

Sensor ini dapat mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan keluarannya berupa tegangan analog. Sensor dapat mengukur konsentrasi gas mudah terbakar dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.

 

8. Touch sensor



Sensor sentuh merupakan sebuah saklar yang cara penggunaanya dengan cara disentuh menggunakan jari. Ketika sensor ini disentuh maka sensor akan bernilai HIGH.

Konfigurasi pin:


Spesifikasi sensor touch:



grafik sensor sentuh






9.Relay



Relay adalah komponen yang berfungsi untuk mengalirkan arus listrik yang besar dengan menggunakan kendali listrik arus kecil. Relay memiliki fungsi sebagai saklar atau elektromagnetik switch yang mana dikendalikan oleh magnet listrik.

Konfigurasi pin relay:



Spesifikasi Relay:

10. Motor DC



Digunakan untuk output dari rangkaian dan berjalan jika sensor infrared berlogika 1

Grafik Motor DC:



 Spesifikasi item:

o   Tanpa kecepatan beban 12000 ± 15% rpm

o   Tidak ada arus beban =280mA

o   Tegangan operasi 1.5 - 9 VDC

o   Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)

o   mulai saat ini =5A

o   Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V

o   Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative

o   daya, searah jarum jam dianggap oleh arah poros keluaran

o   celah poros 0,05-0,35mm

11. IC Op Amp

    Op amp tipe LM741 ini dirangkai menjadi non inverting amplifier sebagai penguat tegangan.

12. Battery


 

Sumber tegangan terbagi menjadi dua yaitu sumber tegangan AC (arus bolak-balik) dan DC (arus searah), yang berfungsi sebagai penghasil tegangan pada rangkaian.Pada rangkaian ini menggunakan sumber tegangan DC.

13. Sensor flame

Flame Sensor merupakan salah satu alat instrument berupa sensor yang dapat mendeteksi nilai intensitas dan frekuensi api dengan panjang gelombang antara 760 nm ~ 1100 nm. 

Spesifikasi dari flame detector ini adalah sebagai berikut:

           1. Keluaran = Digital (D0)

            2. Output Digital: 0 dan 1

            3. Tegangan operasi: 3.3V hingga 5V

            4. Format keluaran: Output digital (TINGGI / RENDAH) 

            5. Rentang deteksi panjang gelombang: 760nm hingga 1100nm

            6. Menggunakan komparator LM393

            7. Sudut deteksi: sekitar 60 derajat

            8. Sensitivitas yang dapat disesuaikan melalui potensiometer

            9. Arus Keluaran Maksimum: 15 mA

            10. Indikator lampu LED: daya (merah) dan output switching digital (hijau)

            11. Api yang lebih ringan mendeteksi jarak 80cm

Konfigurasi pin:

 Modul sensor api ini memiliki 4 kaki/pinout dengan konfigurasi : 

1. Vcc (5V) 

2. Gnd 

3. AO (Analog Input). 

4. Digital Output (DO). 


14. Gerbang Inverter/not



Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran)

Spesifikasi IC inverter yang dijual dipasaran:

Adapan IC inverter gerbang logika NOT yang tersedia yaitu :

    TTL Logic NOT Gates

    74LS04 Hex Inverting NOT Gate

    74LS14 Hex Schmitt Inverting NOT Gate

    74LS1004 Hex Inverting Drivers

    CMOS Logic NOT Gates

    CD4009 Hex Inverting NOT Gate

    CD4069 Hex Inverting NOT Gate

 

DataSheet IC 74HC05

15.  IC 4556

Merupakan decoder/demultiplexer biner to decimal, dengan 2 input dan 4 output


 


Datasheet IC 4556


 16. Encoder IC 74147

Merupakan encoder decimal to binary dengan 10 input dan 4 input



 


17. Buzzer

Berfungsi sebagai penghasil bunyi pada kondisi yang ditentukan.

Spesifikasi:  

 

C. Dasar Teori [back]

1.Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.







Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor



2. Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan



Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

3. Transistor

Transistor NPN



Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.


Transistor PNP



Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)



4. Gerbang Logika AND (IC 7408)

Gerbang AND atau disebut juga "AND GATE" adalah jenis gerbang logika yang memiliki dua input (Masukan) dan satu output (keluaran). Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang AND berikut.



Pada gerbang logika AND, simbol yang menandakan operasi gerbang logika AND adalah tanda titik (.) atau bisa juga dengan tanpa tanda titik, contohnya seperti Z = X.Y atau Z = XY.

Perhatikan tabel kebenaran gerbang AND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang AND akan menghasilkan output (keluaran) logika 1 bila semua variabel input (masukan) bernilai logika 1" sebalikanya "Gerbang AND akan menghasilkan keluaran logika 0 bila salah satu masukannya merupakan logika 0"

Jenis Gerbang Logika AND

Adapun gerbang logika AND terdiri dari gerbang logika AND 2 input dan 3 input. Untuk memperjelas silahkan perhatikan gambar berikut.




Berdasarkan ekspresi Boolean untuk fungsi logika AND didefinisikan sebagai (.) yang mana merupakan operasi bilangan biner, sehingga gerbang AND dapat diturunkan secara bersama-sama untuk membentuk sejumlah input.

Tetapi mengingat bahwa IC gerbang AND yang tersedia dipasaran hanya terdiri dari input 2, 3, atau 4. maka diperlukan input tambahan , sehingga gerbang AND standar perlu diturunkan bersama sehingga mendapatkan nilai input yang diperlukan, sebagai contoh

Gerbang AND Multi Input



Berdasarkan Gerbang AND 6 input diatas maka ekspresi Boolean yaitu :

Q = (A.B).(C.D).(E.F)


5. D Flip Flop


Data flip-flop merupakan pengembangan dari RS flip-flop, pada D flip-flop kondisi output terlarang (tidak tentu) tidak lagi terjadi. Data flip-flop sering juga disebut dengan istilah D-FF sehingga lebih mudah dalampenyebutannya. Data flip-flop merupakan dasar dari rangkaian utama sebuah memori penyimpan data digital. Input atau masukan pada RS flip-flop adalah 2 buah yaitu R (reset) dan S (set), kedua input tersebut dimodifikasi sehingga pada Data flip-flop menjadi 1 buah input saja yaitu input atau masukan D (data) saja. Model modifikasi RS flip-flopmenjadi D flip-flop adalah dengan penambahan gerbang NOT (Inverter) dari input S ke input R pada RS flip-flop seperti telihat pada gambar dasar D flip-flop berikut. 

Gambar Rangkaian Dasar D Flip-Flop.



Pada gambar diatas input Set (S) dihubungkan ke input Reset (R) pada RS flip-flop menggunakan sebuah inverter sehingga terbentuk input atau masukan baru yang diberi nama input Data (D). Dengan kondisi tersebut maka RS flip-flop berubah menjadi Data Flip-Flop (D-FF). Pada perkembanganya D flip flop ini ditambahkan dengan input atau masukan control berupa enable/clock seperti ditunjukan pada gambar berikut. 

Gambar Data Flip-FLop Dengan Enable/Clock.



Gambar diatas memperlihatkan Data flip-flop yang dilengkapi denganmasukan enable/clock. Fungsi input enable/clock diatas adalah untuk menahan data masukan pada jalur Data (input D) agar tidak diteruskan ke rangkaian RS flip-flop. Prinsip kerja dari rangkaian Data flip-flop dengan clock diatas adalahsebagai berikut. Apabila input clock berlogika 1 “High” maka input pada jalur data akan di teruskan ke rangkaian RS flip flop, dimana pada saat input jalur Data 1 “High” maka kondisi tersebut adalah Set Q menjadi 1 “High” dan pada saat jalur Data diberikan input 0 “Low” maka kondisi yang terjadi adala Reset Q menjadi 0 “Low”. Kemudian Pada saat input Clock berlogika rendah maka data output pada jalur Q akan ditahan (memori 1 bit) walaupun logika pada jalur input Data berubah. Kondisi inilah yang disebut sebagai dasar dari memor 1 bit. Untuk lebih jelasnya dapat dilihat pada tabel Data flip-flop berikut.

Dari tabel kebenaran diatas terlihat bahwa Data flip-flop merupakan dasar dari pembuatan memori digital 1 bit. Data Flip-flop sering juga disebut sebagai D-latch.





JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika DasarJK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar
JK flip-flop merupakan flip flopyang dibangun berdasarkan pengembangan dari RS flip-flop. JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop JK flip-flop,teori jk flip-flop,fungsi jk flip flop,flip flop jk,rangkaian jk flip flop,dasar jk flip flop,truth table jk flip flop,jk ff,aplikasi jk flip-flop,manfaat jk flip-flop,kelebihan jk flip-flop,ic jk flip flop Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut. Tabel Kebenaran JK Flip-Flop CLK J K Q Keterangan 0 0 0 * Latch, kondisi terakhir ↑ 0 1 0 ↑ 1 0 1 ↑ 1 1 1 Latch, kondisi terakhir ↑ 1 1 0 Togle ↑ 1 1 1 Togle ↑ 1 1 0 Togle ↑ 0 0 0 Latch, kondisi terakhir ↑ 1 1 0 Latch, kondisi terakhir ↑ 1 1 1 Togle ↑ 1 1 0 Togle Selain dengan tabel kebenaran, dalam memahami karakteristik JK flip-flop seperti tabel diatas dapat dapat juga dipahami melalui timing diagram dari pemberian input kepada JK flip-flop seperti ditunjukan pada gambar berikut. Timing Diagram JK Flip-Flop Timing Diagram JK FF,diagram waktu jk flip flop Dari kedua penjelasan diatas (tabel kebenaran dan timing diagram) karakteristik JK flip-flop dapat kita pahami dengan cepat dan baik. Aplikasi JK flip-flop sering digunakan sebagai komponen utama suatu pencacah digital.

Read more at: https://elektronika-dasar.web.id/jk-flip-flop/
Copyright © Elektronika Dasar

6. Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

7. Sensor MQ 2

Sensor MQ-2 adalah sensor yang digunakann untuk mendeteksi konsentrasi gas yang mudah terbakar di udara serta asap dan output membaca sebagai tegangan analog. Sensor gas asap MQ-2 dapat langsung diatur sensitifitasnya dengan memutar trimpotnya. Sensor ini biasa digunakan untuk mendeteksi kebocoran gas baik di rumah maupun di industri. Gas yang dapat dideteksi diantaranya : LPG, i-butane, propane, methane , alcohol, Hydrogen, smoke.

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

·Tegangan Operasi + 5V

. Dapat digunakan untuk mengukur atau mendeteksi LPG, Alkohol, Propana, Hidrogen, CO dan bahkan metana

·Tegangan keluaran analog 0V hingga 5V

·Tegangan keluaran digital 0V atau 5V (TTL Logic)

·Durasi pemanasan awal 20 detik

·Dapat digunakan sebagai sensor digital atau analog

·Sensitivitas pin digital dapat divariasikan menggunakan potensiometer 

Sensor ini dapat mendeteksi konsentrasi gas yang  mudah terbakar di udara serta asap dan keluarannya berupa tegangan analog. Sensor dapat mengukur konsentrasi gas mudah terbakar dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari 150 mA pada 5V.

  




8. Sensor touch

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.



Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Sensor  Sentuh Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Sentuh Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

 Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

 Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Grafik Respon Sensor Touch:


9. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

10. Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

 

11. IC OP AMP 

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

b. Inverting dan non inverting amplifier





Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)



Grafik input dan output op amp

12. Battery

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.

13. Sensor Flame (sensor api) 

 Dalam suatu proses pembakaran pada pembangkit listrik tenaga uap, flame detector dapat mendeteksi hal tersebut dikarenakan oleh komponen-komponen pendukung dari flame detector. Sensor nyala api ini mempunyai sudut pembacaan sebesar 60 derajat, dan beroperasi normal pada suhu 25 – 85 derajat Celcius. Adapun unit flame detector dapat dilihat pada gambar dibawah ini:



 1. Pin1 (pin VCC): Suplai tegangan dari 3.3V ke 5.3V

 2. Pin2 (GND): Ini adalah pin ground

 3. Pin3 (AOUT): Ini adalah pin keluaran analog (MCU.IO)

 4. Pin4 (DOUT): Ini adalah pin keluaran digital (MCU.IO)

Spesifikasi

            1. Keluaran = Digital (D0)

            2. Output Digital: 0 dan 1

            3. Tegangan operasi: 3.3V hingga 5V

            4. Format keluaran: Output digital (TINGGI / RENDAH) 

            5. Rentang deteksi panjang gelombang: 760nm hingga 1100nm

            6. Menggunakan komparator LM393

            7. Sudut deteksi: sekitar 60 derajat

            8. Sensitivitas yang dapat disesuaikan melalui potensiometer

            9. Arus Keluaran Maksimum: 15 mA

            10. Indikator lampu LED: daya (merah) dan output switching digital (hijau)

            11. Api yang lebih ringan mendeteksi jarak 80cm

Cara kerja flame detector mampu bekerja dengan baik untuk menangkap nyala api untuk mencegah kebakaran, yaitu dengan mengidentifikasi atau mendeteksi  nyala apiyang dideteksi oleh keberadaan spectrum cahaya infra red maupun ultraviolet dengan menggunakan metode optic kemudian hasil pendeteksian itu akan diteruskan ke Microprosessor yang ada pada unit flame detector akan bekerja untuk membedakan spectrum cahaya yang terdapat pada api yang terdeteksi tersebut dengan sistem delay selama 2-3 detik pada detektor ini sehingga mampu mendeteksi sumber kebakaran lebih dini dan memungkinkan tidak terjadi sumber alarm palsu.

Pada sensor ini menggunakan tranduser yang berupa infrared (IR) sebagai sensing sensor. Tranduser ini digunakan untuk mendeteksi akan penyerapan cahaya pada panjang gelombang tertentu, yang memungkinkan alat ini untuk membedakan antara spectrum cahaya pada api dengan spectrum cahaya lainnya seperti spectrum cahaya lampu, kilatan petir, welding arc, metal grinding, hot turbine, reactor, dan masih banyak lagi. 

14. Gerbang Inverter

Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.



Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1
 
15. Decoder IC 4556
Decoder IC 4556 adalah decoder BCD atau binary to decimal, dimana memiliki 2 input dan Input enable dengan aktif rendah. Dan 4 output yang mewakili angka decimal dari 0-3 dengan output berupa tegangan rendah. 



16. Encoder IC 74147

Encoder adalah kebalikan dari decoder, encoder 10 line (desimal) ke BCD 74147 adalah sebuah chip IC yang berfungsi untuk mengokdekan 10 line jalur input (desimal) menjadi data dalam bentuk BCD (Binary Coded decimal). IC encoder 74147 merupakan encoder data desimal menjadi data BCD dengan input aktif LOW dan output 4 bit BCD aktif LOW. Encoder desimal ke BCD ini sering kita perlukan pada saat perancangan suatu perangkat digital dan kita mengalami kekurangan port atau jalut untuk input saklarnya. IC encoder 74147 merupakan IC dalam keluarga TTL yang bekerja dengan tegangan sumber + 5 volt DC. Konfigurasi pin dan tabel kebenaran dari encoder TTL 10 line (desimal) ke BCD IC 74147 dapat dilihat pada gambar berikut.

Konfigurasi Pin Dan Tabel Kebenaran Encoder 74147


Home » Komponen » Encoder 10 Line (Desimal) Ke BCD 74147 Encoder 10 Line (Desimal) Ke BCD 74147 Friday, March 26th 2021. | Komponen, Teori Elektronika Mesothelioma Law Firm, Sell Annuity Payment Encoder adalah kebalikan dari decoder, encoder 10 line (desimal) ke BCD 74147 adalah sebuah chip IC yang berfungsi untuk mengokdekan 10 line jalur input (desimal) menjadi data dalam bentuk BCD (Binary Coded decimal). IC encoder 74147 merupakan encoder data desimal menjadi data BCD dengan input aktif LOW dan output 4 bit BCD aktif LOW. Encoder desimal ke BCD ini sering kita perlukan pada saat perancangan suatu perangkat digital dan kita mengalami kekurangan port atau jalut untuk input saklarnya. IC encoder 74147 merupakan IC dalam keluarga TTL yang bekerja dengan tegangan sumber + 5 volt DC. Konfigurasi pin dan tabel kebenaran dari encoder TTL 10 line (desimal) ke BCD IC 74147 dapat dilihat pada gambar berikut. Konfigurasi Pin Dan Tabel Kebenaran Encoder 74147

Read more at: https://elektronika-dasar.web.id/encoder-10-line-desimal-ke-bcd-74147/
Copyright © Elektronika Dasar

Konfigurasi pin dan tabel kebenaran encoder 74147 diatas diambil dari datasheet IC 74147. IC 74147 memiliki 16 pin dengan kemasan IC DIP. Encoder IC 74147 memiliki 9 jalur input desimal 1 sampai 9 aktif LOW dan 4 jalur output BCD aktif LOW. Tegangan sumber untuk IC 74147 diberikan melalui pin Vcc (+5 volt DC) dan pin GND (ground). Input pada encoder IC 74147 ini di simbolkan dengan input 1 sampai 9 dan jalur output BCD 4 bit disimbolkan dengan Q0 sampai Q3. Pada tabel kebenaran encoder IC 74147 terdiri dari data jalur input 9 line (1 – 9) aktif LOW, 4 bit output (Q0, Q1, Q2, Q3) BCD aktif LOW dan nilai logika negatif BCD. Kode H (HIGH) mereprentasikan kondisi logika 1 (HIGH), L merepresentasikan logika 0 (LOW) dan kode X adalah don’t care yaitu tidak berpengaruh terhadap proses encoding data desimal ke BCD IC Encoder 74147.

Rangkaian gerbang logika pada encoder 74147

 
 
D. Prosedur Percobaan  [back]

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komponen yang diperlukan di library proteus

4. Rangkailah Rangkaian sesuai dengan gambar dibawah

5. jika ingin mensimulasikan jangan lupa masukkan libarary sensor sensor touch

6. Coba dijalankan rangkaian apabila ouput hidup/berputar (motor dc) maka rangkaian bisa digunakan


E. Rangkaian Simulasi [back]




F. Prinsip Kerja  [back]

    Saat ada yang ingin memasuki ruangan, maka sensor infrared yang berada di pintu akan mendeteksi tangan orang. Tangan terdeteksi yang menyebabkan sensor IR berlogika 1, sehingga mengeluarkan tegangan sebesar +4,85 V dan arus mengalir menuju resistor R5, kemudian diumpankan ke kaki base transistor. Dikarenakan tegangan pada kaki base sebesar +1.14 V dimana cukup mengaktifkan Transistor, maka arus akan mengalir dari power supply menuju kaki colector lalu ke kaki emiter lalu ke ground. Adanya arus yang mengalir menyebabkan relay berpindah, sehingga pengunci pintu terbuka dan indikator keberadaan orang menyala.

    Ketika suhu di ruangan besar dari 25 derajat celcius, maka tegangan yang keluar dengan menggunkan sensor LM35, lebih besar dari +0.25 V. Dengan menggunakan rangkaian detektor inverting dengan Vref nya +0.25 V, maka dengan menggunakan rumus Vo = (Vi - Vref) Aol, didapatkan tegangan sebesar +4 V. Yang kemudian diumpankan ke resistor R12 lalu ke kaki gerbang XOR 2 input, sedangkan kaki gerbang XOR satunya dihubungkan ke sensor sound. Output gerbang XOR dihubungkan ke kaki select A Demux 4555 dan kaki input A decoder 74247. Saat sound sensor berlogika 0, sedangkan kaki satunya lagi berlogika 1, maka dengan prinsip gerbang XOR, yaitu berlogika 1 apabila salah satu input berlogika satu dan berlogika 0 apabila kedua input berlogika sama, maka gerbang XOR akan berlogika 1. 

Dengan select A demux berlogika 1 dan select B berlogika 0, dilihat dari tabel kebenaran diatas, maka output O1 akan berlogika 1, sehingga arus akan mengalir menuju resistor R1 lalu ke kaki base transistor. Dikarenakan tegangan pada kaki base sebesar +1.05 V dimana cukup mengaktifkan Transistor, maka arus akan mengalir dari power supply menuju kaki colector lalu ke kaki emiter lalu ke ground. Adanya arus yang mengalir menyebabkan relay berpindah, sehingga kipas angin akan berputar.
Dengan berlogika 1 nya input A decoder 74247, dan input B, C, dan D berlogika 0, berdasarkan tabel kebenaran diatas, output yang berlogika 1 adalah Qb dan Qc, sehingga display akan menunjukkan angka 1. Apabila sound sensor berlogika 1, maka output gerbang XOR akan berlogika 0, sehingga select A dan B akan berlogika 0. Berdasarkan tabel kebenaran demux, maka output yang hidup adalah O0, sehingga kipas angin tidak hidup.
    Ketika suhu di ruangan kecil dari 25 derajat celcius, maka tegangan yang keluar dengan menggunakan sensor LM35, lebih kecil dari +0.25 V. Dengan menggunakan rangkaian detektor inverting dengan Vref nya +0.25 V, maka dengan menggunakan rumus Vo = (Vi - Vref) Aol, didapatkan tegangan sebesar +4 V. Yang kemudian diumpankan ke resistor R2 lalu ke kaki gerbang XOR 2 input, sedangkan kaki gerbang XOR satunya dihubungkan ke sensor touch. Output gerbang XOR dihubungkan ke kaki select B Demux 4555 dan kaki input B decoder 74247. Saat touch sensor berlogika 0, sedangkan kaki satunya lagi berlogika 1, maka dengan prinsip gerbang XOR, yaitu berlogika 1 apabila salah satu input berlogika satu dan berlogika 0 apabila kedua input berlogika sama, maka gerbang XOR akan berlogika 1. 
    Dengan select B demux berlogika 1 dan select A berlogika 0, dilihat dari tabel kebenaran diatas, maka output O2 akan berlogika 1, sehingga arus akan mengalir menuju resistor R3 lalu ke kaki base transistor. Dikarenakan tegangan pada kaki base sebesar +1.04 V dimana cukup mengaktifkan Transistor, maka arus akan mengalir dari power supply menuju kaki colector lalu ke kaki emiter lalu ke ground. Adanya arus yang mengalir menyebabkan relay berpindah, sehingga heater akan hidup. Dengan berlogika 1 nya input B decoder 74247, dan input A, C, dan D berlogika 0, berdasarkan tabel kebenaran diatas, output yang berlogika 1 adalah Qa, Qb, Qd, Qe, dan Qg, sehingga display akan menunjukkan angka 2. Apabila touch sensor berlogika 1, maka output gerbang XOR akan berlogika 0, sehingga select A dan B akan berlogika 0. Berdasarkan tabel kebenaran demux, maka output yang hidup adalah O0, sehingga heater tidak hidup.

G. Video Simulasi [back]




 

H. Download File [back]

Html

Rangkaian Proteus 

Video Rangkaian

Datasheet Touch Sensor

Datasheet MQ2

Library Touch Sensor

Libarary MQ 2 

Library Flame Sensor 

Datasheet Resistor

Datasheet Dioda 

Datasheet Relay

DataSheet Motor DC

DataSheet OPAMP

Datasheet Flame Sensor 

Datasheet Decoder 4556 

Datasheet Encoder 74147

Datasheet Buzzer

Datasheet Gerbang Inverter
 




 
 
 
 
 

No comments:

Post a Comment