Aplikasi TRbipo

a
[KEMBALI KE MENU SEBELUMNYA]

DAFTAR ISI
1. Tujuan
2. Alat dan Bahan
3. Dasar Teori
4. Percobaan



1. Tujuan[Kembali]

1. Untuk mencegah ngantuk
2. Untuk membengunkan ketika tertidur tiba-tiba
3. Untuk memahami senosr heartbeat dan touch sensor
4. Untuk memahami transistor bipolar.

2. Alat Dan Bahan[Kembali]


a. DC Generator




DC Generator ini adalah alat/komponen yang digunakan sebagai pemberi sumber tegangan pada rangkaian.

b.  Motor DC 


Motor DC dan Jenis-jenisnya – Himpunan Mahasiswa Teknik Komputer

Motor DC adalah Motor listrik yang membutuhkan suplai tegangan arus searah atau arus DC (Direct Current) pada kumparan medan untuk diubah menjadi energi mekanik. 
 

c. Transistor NPN 


 
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
 

d. Relay

Pengertian dan Cara Kerja Relay | Panduan Teknisi

 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch).

 e. Sensor Pir


Sensor PIR HC-SR501 Motion Sensor Module Arduino Raspberry di ... 

 Sensor PIR merupakan sensor yang dapat mendeteksi pergerakan

f. Resistor

Resistor adalah perangkat elektronik yang berperan sebagai penghambat tengangan suatu rangkaian. Resistor ini memiliki berbagai variasi hambatan yang satuannya ohm.
 

g. Sensor XDC



Pulse Sensor adalah sensor detak jantung plug-and-play



3. Dasar Teori[Kembali]



a. DC Generator 

Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu: 

Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.



Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

  1. dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
  2. dengan menggunakan komutator, menghasilkan tegangan DC.

Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3.
Gambar 2. Pembangkitan Tegangan Induksi.

Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.
Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.

  • Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.
  • Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

Jenis-Jenis Generator DC 

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
  1. Generator penguat terpisah
  2. Generator shunt
  3. Generator kompon 

b. Motor DC

Seperti yang sudah dijelaskan sebelumnya bahwa motor terdiri atas 2 bagian utama yaitu stator dan motor. Pada stator terdapat lilitan (winding) atau magnet permanen, sedangkan rotor adalah bagian yang dialiri dengan sumber arus DC. Arus yang melalui medan magnet inilah yang menyebabkan rotor dapat berputar. Arah gaya elektromagnet yang ditimbulkan akibat medan magnet yang dilalui oleh arus dapat ditentukan dengan menggunakan kaidah tangan kanan.


          

Keuntungan utama motor DC adalah sebagai pengendali kecepatan, yang tidak mempengaruhi kualitas pasokan daya. Motor ini dapat dikendalikan dengan mengatur:
• Tegangan dinamo : meningkatkan tegangan dinamo akan meningkatkan kecepatan
• Arus medan : menurunkan arus medan akan meningkatkan kecepatan.
 

Mekanisme Kerja Motor DC

Mekanisme kerja untuk seluruh jenis motor secara umum sama
Arus listrik dalam medan magnet akan menimbulkan gaya.
· Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapat gaya pada arah yang berlawanan.
· Pasangan gaya menghasilkan torsi untuk memutar kumparan.
· Motor- motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putar yang lebih seragam dari medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan

Beberapa kerugian penggunaan motor DC:

-Perawatan intensif karena brush atau sikat pada motor DC akan aus.

-Konversi arus AC menjadi arus DC menggunakan konverter memerlukan biaya yang mahal.

Keuntungan penggunaan motor DC:

-Kecepatannya mudah diatur.

Perhitungan pada motor DC :


Daya input      :           Pin= √3 Vrms Irms cosƟ

Daya output    :           Pout= Tout w

w = kecepatan sudut

Tout = torsi output

Efisiensi          :           η (%) = (Pout/Pin) x 100

 

Mengapa terdapat efisiensi pada motor? Karena motor yang digunakan tidak dapat bersifat ideal, artinya pada motor ada kehilangan daya pada setiap prosesnya sehingga daya output akan bernilai lebih kecil daripada daya input. Kehilangan daya ini biasa disebut sebagai rugi-rugi daya dan dapat disebabkan karena mechanical (gesekan dan rotasi) serta electric (hambatan pada belitan).

Simbol motor listrik
 

d. Transistor NPN
Fungsi-fungsi Transistor diantaranya adalah :

  • sebagai Penyearah,
  • sebagai Penguat tegangan dan daya,
  • sebagai Stabilisasi tegangan,
  • sebagai Mixer,
  • sebagai Osilator
  • sebagai Switch (Pemutus dan Penyambung Sirkuit)

Struktur Dasar Transistor

Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.

NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.

Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.

Tipe Transistor NPN dan PNP beserta simbolnya

Cara Mengukur Transistor

Kita dapat menggunakan Multimeter Analog maupun Multimeter Digital untuk mengukur ataupun menguji apakah sebuah Transistor masih dalam kondisi yang baik. Perlu diingatkan bahwa terdapat perbedaan tata letak Polaritas (Merah dan Hitam) Probe Multimeter Analog dan Multimeter Digital dalam mengukur/menguji sebuah Transistor.

Berikut ini adalah Cara untuk menguji atau mengukur Transistor dengan Mengunakan Multimeter Analog dan Multimeter Digital.

A. Mengukur Transistor dengan Multimeter Analog

Cara mengukur Transistor dengan Multimeter Analog

Cara Mengukur Transistor PNP dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Analog

1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.

Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Jarum pada Multimeter Analog harus tidak akan bergerak sama sekali atau “Open”.


B. Mengukur Transistor dengan Multimeter Digital

Pada umumnya, Multimeter Digital memiliki fungsi mengukur Dioda dan Resistansi (Ohm) dalam Saklar yang sama. Maka untuk Multimeter Digital jenis ini, Pengujian Multimeter adalah terbalik dengan Cara Menguji Transistor dengan Menggunakan Multimeter Analog.

Cara Mengukur Transistor dengan Multimeter Digital

Cara Mengukur Transistor PNP dengan Multimeter Digital


1. Atur Posisi Saklar pada Posisi Dioda
2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika Display Multimeter nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.

Cara Mengukur Transistor NPN dengan Multimeter Digital


    1. Atur Posisi Saklar pada Posisi Dioda
    2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik
    3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika Display Multimeter menunjukan nilai Voltage tertentu, berarti Transistor tersebut dalam kondisi baik.
Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Display Multimeter Digital harus tidak akan menunjukan Nilai Voltage atau “Open”.

Simbol Transistor

e. Relay

Relay adalah komponen elektronika berupa saklar elektronik yang digerakkan oleh aruslistrik. Secara prinsip, relay merupakan tuas saklar dengan lilitan kawat pada batang besi (solenoid) di dekatnya.Ketika solenoid dialiri aruslistrik, tuasa kantertarik karena adanya gaya magnet yang terjadi pada solenoid sehingga kontak saklarakan menutup. Pada saat arus ihentikan, gaya magnet akan hilang, tuasakan kembalikeposisi semula dan konta ksaklar kembali terbuka.Relay biasanya digunakan untuk menggerakkan arus / tegangan yang besar (misalnyaperalatanlistrik 4 A / AC 220 V) denganmemakaiarus / tegangan yang kecil (misalnya 0.1 A / 12 Volt DC). 

Gambar Bentuk dan Simbol Relay

Gambar bentuk dan Simbol relay


 Struktur dasar Relay

Fungsi-fungsi dan Aplikasi Relay

Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :

  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).

e. Sensor Pir

Sensor PIR merupakan sensor yang dapat mendeteksi pergerakan, dalam hal ini sensor PIR banyak digunakan untuk mengetahui apakah ada pergerakan manusia dalam daerah yang mampu dijangkau oleh sensor PIR. Sensor ini memiliki ukuran yang kecil, murah, hanya membutuhkan daya yang kecil, dan mudah untuk digunakan. Oleh sebab itu, sensor ini banyak digunakan pada skala rumah maupun bisnis. Sensor PIR ini sendiri merupakan kependekan dari “Passive InfraRed” sensor.

Bagian-Bagian Sensor PIR

Gambar berikut menunjukkan bagian-bagian dari sensor PIR yang perlu untuk diketahui

Bagian Sensor PIR
Bagian Sensor PIR
  1. Pengatur Waktu Jeda : Digunakan untuk mengatur lama pulsa high setelah terdeteksi terjadi gerakan dan gerakan telah berahir. *
  2. Pengatur Sensitivitas : Pengatur tingkat sensitivitas sensor PIR *
  3. Regulator 3VDC : Penstabil tegangan menjadi 3V DC
  4. Dioda Pengaman : Mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND
  5. DC Power : Input tegangan dengan range (3 – 12) VDC (direkekomendasikan menggunakan input 5VDC).
  6. Output Digital : Output digital sensor
  7. Ground : Hubungkan dengan ground (GND)
  8. BISS0001 : IC Sensor PIR
  9. Pengatur Jumper : Untuk mengatur output dari pin digital.

Cara Kerja PIR

Pada umumnya sensor PIR dibuat dengan sebuah sensor pyroelectric sensor (seperti yang terlihat pada gambar disamping) yang dapat mendeteksi tingkat radiasi infrared. Segala sesuatu mengeluarkan radiasi dalam jumlah sedikit, tapi semakin panas benda/mahluk tersebut maka tingkat radiasi yang dikeluarkan akan semakin besar. Sensor ini dibagi menjadi dua bagian agar dapat mendeteksi pergerakan bukan rata-rata dari tingkat infrared. Dua bagian ini terhubung satu sama lain sehingga jika keduanya mendeteksi tingkat infrared yang sama maka kondisinya akan LOW namun jika kedua bagian ini mendeteksi tingkat infrared yang berbeda (terdapat pergerakan) maka akan memiliki output HIGH dan LOW secara bergantian.

Grafik Sensor Pir

 

f. Sensor Detak Jantung

Kit Sensor Denyut mencakup: 
1) Kabel Berkode Warna 24 inci, dengan konektor konektor (jantan). Anda akan menemukan ini memudahkan untuk menyematkan
sensor ke proyek Anda, dan sambungkan ke Arduino. Tidak diperlukan penyolderan.
2) Klip Telinga, berukuran sempurna untuk sensor. Kami mencari di banyak tempat untuk menemukan klip yang tepat. Ini dapat direkatkan dengan panas ke bagian belakang sensor dan mudah dikenakan di daun telinga.
3) 2 Titik Velcro. Ini adalah sisi 'kait' dan juga berukuran sempurna untuk sensor. Anda akan menemukan titik-titik velcro ini
sangat berguna jika Anda ingin membuat tali velcro (atau kain) untuk membungkus ujung jari.
4) Tali velcro untuk membungkus Sensor Denyut di sekitar jari Anda.
5) 3 Stiker Transparan. Ini digunakan di bagian depan Sensor Denyut untuk melindunginya dari jari berminyak dan
daun telinga berkeringat.
6) Sensor Denyut memiliki 3 lubang di sekitar tepi luar yang memudahkan untuk menjahit hampir semua hal

grafiknya :


4. Percobaan[Kembali]

a. Prosedur Percobaan

1. Hubungkan lah semua komponen rangkaian sesuai gambar rangkaian
2. Hubungkan rangkaian ke generator DC
3. Apabila ada api, maka pintu akan terbuka
4. Apabila pintu selesai terbuka, maka motor akan berhenti dan lampu menyala
5. Ketika api hilang, motor akan berhenti, sehingga pintu bisa ditutup
6. Ketika pintu ditutup, maka logika sensor PIR bernilai 1 yang menyebabkan lampu mati

b. Rangkaian



C. Prinsip Kerja

    Ketika dalam posisi duduk, maka sensor touch tidak berfungsi yang menyebabkan switch di relay 1 memutuskan aliran supply ke switch di relay 2. Ketika kita menelungkup, maka sensor touch akan on dan switch di relay 1 akan bergeser ke kanan.
    Ketika detak jantung melemah, maka sensor heartbeat tidak mendeteksi detak jantung yang menyebabkan switch selalu berada di kanan sehingga buzzer selalu on.

D. Video Simulasi




E. Link Download

File HTML : Download
Video : Download
Proteus : Download
Library Heart Sensor dan Touch : Download
Datasheet relay : Download
Datasheet motor listrik : Download
Datasheet transistor : Download  
Datasheet xd58-c Download


No comments:

Post a Comment